Interiors Electrical Distribution Systems

Course# EE610
Table of Contents

INTERIOR ELECTRICAL DISTRIBUTION SYSTEMS .. 2

CHAPTER 1 INTRODUCTION ... 2

 1-1 PURPOSE AND SCOPE ... 2
 1-2 APPLICABILITY ... 2
 1-3 GENERAL BUILDING REQUIREMENTS .. 2
 1-4 REFERENCES ... 3
 1-5 DESIGN STANDARDS ... 3

CHAPTER 2 GENERAL POWER SYSTEM CRITERIA .. 3

 2-1 VOLTAGE ... 3
 2-2 FREQUENCY .. 3

CHAPTER 3 POWER DISTRIBUTION AND UTILIZATION .. 4

 3-1 TRANSFORMERS ... 4
 3-2 SERVICE ENTRANCE AND DISTRIBUTION EQUIPMENT ... 5
 3-3 MOTORS AND MOTOR CONTROL CIRCUITS ... 8
 3-4 SURGE PROTECTIVE DEVICES (SPDS) .. 9
 3-5 METERING ... 14
 3-6 RACEWAY AND WIRING ... 14
 3-7 STATIONARY BATTERIES AND BATTERY CHARGERS .. 21
 3-8 GROUNDING, BONDING, AND STATIC PROTECTION .. 24
 3-9 POWER QUALITY ... 24
 3-10 SYSTEMS FURNITURE ... 25
 3-11 ASHRAE COMPLIANCE ... 25

GLOSSARY .. 26

DEFINITION OF TERMS ... 29

REFERENCES ... 31
INTERIOR ELECTRICAL DISTRIBUTION SYSTEMS

CHAPTER 1 INTRODUCTION

1-1 PURPOSE AND SCOPE.
The criteria contained herein are intended to ensure economical, durable, efficient, and reliable systems and installations. Whenever unique conditions and problems are not specifically covered by this course, use the applicable referenced industry standards and other documents for design guidance.

1-2 APPLICABILITY.
This publication typically applies up to 5 foot beyond the facility envelope. It also applies to:

• Service(s) supplying power from the utility system utilization transformer to the wiring system of the facility.

• Circuits originating from within the facility that extend beyond the facility envelope.

• Wiring and connections for supplemental grounding systems.

• Wiring from and connections to non-utility equipment supplying power to the wiring system of the facility, including engine-generator sets, photovoltaic power systems and fuel cells.

In addition to NFPA 70 requirements, facilities located outside of the United States must also comply with the applicable host nation standards. Host nation voltage and frequency generally applies. Different wiring and grounding conventions usually apply in other host nations; however, follow the design principles provided in this publication to the extent practical, Host Nation Facilities. Department of Commerce International Trade Administration document, and Electric Current Abroad,

1-3 GENERAL BUILDING REQUIREMENTS.
General Building Requirements provides applicability of model building codes and government unique criteria for typical design disciplines and building systems, as well as for accessibility, antiterrorism, security, high performance and sustainability requirements, and safety.
1-4 REFERENCES.
References are listed in the reference section on the last page of this publication.

1-5. DESIGN STANDARDS.
Comply with the requirements of National Fire Protection Association (NFPA) 70, National Electrical Code, and the requirements herein.

Note: When a project, or portion of a project, has been designated as requiring Critical Operations Power Systems (COPS) treatment as a Designated Critical Operations Area (DCOA) per NFPA 70 Article 708, the requirements that are more stringent than this publication take precedence over this publication.

Codes and standards are referenced throughout this publication. The publication date of the code or standard is not routinely included with the document identification throughout the text of the document. The design is intended to use the most current version of a publication, standard or code in effect when the design contract is signed unless written direction is provided to the contrary. If dates are not indicated in the contract or in the absence or other direction, the issue/version of publication in effect at the time the design started is to be used. Designs that have been started and then delayed will need to evaluate which version is applicable, and may have to update to the newer version if considerable time has gone by. This may require some redesign.

CHAPTER 2 GENERAL POWER SYSTEM CRITERIA

2-1 VOLTAGE.
Unless there are specialty voltage requirements, base the facility system voltage on the interior load requirements as follows:

- Apply 240/120V for small facilities with only single-phase loads.

- Apply three-phase, four-wire, 208Y/120V systems for lighting and power demand loads less than 150 kVA.

- Apply three-phase, four-wire, 480Y/277V systems for lighting and power demand loads greater than 150 kVA unless 208Y/120V systems are shown to be more cost-effective. Use step-down transformers inside the facility as required to obtain lower voltages.

2-2 FREQUENCY.
Apply a frequency of 60 Hz for distribution and utilization power.

In locations in which the commercially-supplied frequency is other than 60 Hz, such as 50 Hz, use the available supplied frequency to the extent practical. Where frequencies other than that
locally available are required for technical purposes, frequency conversion or generation equipment can be installed. The facility user will normally provide this equipment.

CHAPTER 3 POWER DISTRIBUTION AND UTILIZATION

3-1 TRANSFORMERS.
The transformer design criteria provided herein apply to interior applications. Most facilities will be supplied by an exterior utility system pad-mounted transformer.

3-1.1 Low Voltage Transformers.
Specify dry-type transformers in accordance with NEMA ST 20 and the following:

• For transformers rated for 15 kVA or larger, use transformers with a 220 degree C (428 degrees F) insulation system not to exceed an 115 degree C (239 degrees F) rise capable of carrying continuously 115 percent of nameplate kVA without exceeding insulation rating at a maximum ambient temperature of 40 degrees C (104 degrees F). Provide a transformer of 80 degrees C temperature rise capable of carrying continuously 130 percent of nameplate kVA without exceeding insulation rating when additional overload capacity is required.

• Transformers rated less than 15 kVA can use a 180 degree C (356 degrees F) insulation system not to exceed an 80 degree C (176 degrees F) rise at a maximum ambient temperature of 40 degrees C (104 degrees F).

• When the transformer is located in areas where noise is a factor, specify sound levels at least 3 decibels below recommended values established by NEMA ST 20.

• Derate the transformer in accordance with the manufacturer’s guidance for locations with a maximum ambient temperature above 40 degrees C (104 degrees F) and in accordance NEMA ST 20 for altitudes higher than 3,300 feet (1,000 meters).

Include the following as part of the installation:

• Design system such that transformer vibrations are not transmitted to the surrounding structure. Small transformers can usually be solidly mounted on a reinforced concrete floor or wall. Flexible mounting will be necessary if the transformer is mounted to the structure in a normally low-ambient noise area.

• Use flexible couplings and conduit to minimize vibration transmission through the connection points.
• Locate the transformer in spaces where the sound level is not increased by sound reflection. For example, in terms of sound emission, the least desirable transformer location is in a corner near the ceiling because the walls and ceiling function as a megaphone.

• Provide adequate ventilation in transformer spaces to prevent the temperature rise from exceeding the transformer rating.

3-1.2 Other Transformer Types.
Do not use unless justified and documented in the design analysis.

3-2 SERVICE ENTRANCE AND DISTRIBUTION EQUIPMENT.
Locate service entrance equipment and other major electrical equipment in a dedicated electrical equipment room. Provide a main breaker on each service entrance. Locate other electrical equipment, such as electrical panels, in dedicated spaces.

Note: Identify when 100 percent rated circuit breakers are included in the design.

Size circuit breaker interrupting ratings based on the available short circuit current; however, do not select circuit breakers less than 10 kA symmetrical interrupting rating for voltages 240V and below and 14 kA symmetrical interrupting rating for 480V applications. Do not use series-combination rated breakers. Do not use fusible overcurrent devices except when necessary to comply with NFPA 70 requirements for selective coordination.

3-2.1 Spare Capacity.
Provide a minimum of 15% empty space and spare capacity (ampacity) for all switchgear, switchboards, and panelboards. For flush-mounted equipment, provide spare conduits extending up above the ceiling and down below raised floors when applicable. For panelboards, provide one spare conduit, minimum of ¾-inch (18 mm), for every three empty spaces.

Note: Do not use spare capacity as part of the demand calculations specified in UFC 3-501-01. The overall calculations already account for this spare capacity with the 15% allowance for future load growth specified in UFC 3-501-01 load analysis calculations for the service entrance.

3-2.2 Selection.
Select equipment as follows:

• Specify metal clad switchgear for service entrance equipment only when the service is 1200A or larger, and all branch and feeder circuits are large, such as 600A or 800A each.

• Specify switchboards for service entrance equipment when the service is 1200A or larger, and branch and feeder circuits are combined sizes from 20A up to 800A. Utilize switchboards throughout the distribution system where feeders are 1200A or larger.
• Specify panelboards for service entrance equipment when the service is less than 1200A and feeder circuits can be accommodated in one panelboard.

For all circuit breakers where the continuous current trip setting for the actual overcurrent device in the circuit breaker is rated for or can be adjusted is 1,200 amperes or higher, select the method used to reduce the clearing time for arc energy reduction:

• Zone-selective interlocking, or
• Differential relaying, or
• Energy-reducing maintenance switching with local status indicator, or
• Energy-reducing active arc flash mitigation system or
• An approved equivalent means.

3-2.3 Switchgear.
Design switchgear per IEEE C37.20.1 and UL 1558. Provide electrically operated circuit breakers. The switchgear and circuit breakers must be the product of the same manufacturer.

Evaluate the following options as part of the switchgear design:

• Arc-resistant switchgear tested and certified to IEEE C37.20.7 to provide added protection for internal arcing faults.
• Infrared viewing windows to allow the use of an infrared camera or thermal imager direct line of site to inspect electrical connections without requiring the opening of panels and doors.
• A remote racking mechanism to allow an operator to rack a circuit breaker in or out at least 20 feet from the front of the equipment.
• Drawout compartment shutters to protect operators from accidental contact with breaker stabs when a circuit breaker is withdrawn from its cubicle.

3-2.4 Switchboards.
Design switchboards per NEMA PB2 and UL 891. Devices must be front accessible and must be completely isolated between sections by vertical steel barriers. Switchboards should have hinged fronts to allow safer maintenance access for electrical safety.

3-2.5 Panelboards.

3-2.5.1 Configuration.
Equip panelboards with separate ground bus bars and insulated neutral bus bars to isolate the bus bar, when required by code, from the panelboard. Circuit breakers must be bolt-on type unless
where specifically indicated otherwise for load center type panelboards. Limit each panelboard to a maximum of 42 poles. Do not use dual section panelboards.

Distribution and branch circuit panelboards should be of the wall-mounted, dead-front type, equipped with circuit breakers. Circuit breaker size should be a minimum 1 inch (25 millimeters) per pole with bolt-on breakers. Load center style panelboards, with plug-in breakers should be used only where eight or fewer circuits are supplied, and where light duty can be expected, except as authorized for military family housing.

3-2.5.2 Location and Design.
Place panelboards as close as possible to the center of the loads to be served. Provide panelboards with hinged fronts to allow safer maintenance access for electrical safety. Clearly fill out panelboard circuit directories indicating the specific load and location, such as “Lights, Room 102”.

Optimize equipment layout and circuit arrangement. All homeruns (identifying conduit and wiring back to panel) should be shown on the design drawings. Combine one-pole branch circuits to minimize number of homeruns. Do not design for more than one 3-phase circuit; or 3 single-phase conductors, three neutral conductors and an equipment grounding conductor in a single conduit. When more conductors are required, provide detailed calculations showing compliance with NFPA 70 for derating conductors and conduit fill.

Note: If shared neutrals are used on multi-wire branch circuits, ensure the use of multi-phase handle ties at the associated circuit breakers in accordance with NFPA 70.

3-2.5.3 Arc-Fault Circuit Interrupters
Provide arc-fault circuit interrupter protection for branch circuits supplying 120V, single-phase,15A and 20A outlets installed in dwelling units as specifically required by NFPA 70.

3-2.6 Motor Control Centers (MCCs).
Comply with UL 845 and NEMA ICS 2.

3-2.7 Power for Fire Protection Systems.
Provide power for the fire protection systems from the service entrance equipment as follows:

a. 208Y/120 V or 120/240V systems:

Provide lock-on breaker in the service equipment. If more than one fire protection circuit is required, provide a dedicated emergency panel (sized for a minimum of six circuits) powered from the lock-on breaker in the service equipment.

b. 480Y/277 V systems:
Provide circuit from the service entrance equipment (as above) to a dedicated emergency panel through a step-down transformer. Consider using a packaged power supply for this transformer/emergency panel combination. Size the emergency panel for a minimum of six circuits.

c. Locate the dedicated emergency panel near the service entrance equipment.

d. In all cases paint the lock-on breaker in the service entrance equipment and the dedicated emergency panel enclosure red. At the service entrance equipment, in addition to the panel nameplate, provide a label with the following inscription: “Fire Protection/Life Safety Equipment.” Construct and fasten the label identical to the panel nameplate, except the label must be red laminated plastic with white center core.

3-2.8 Disconnect Switches.
Fusible disconnect switches should be used only where special considerations require their use. Provide heavy duty type safety switches on systems rated for greater than 240V. Use fused switches that utilize Class R fuseholders and fuses. Use NEMA 4X stainless steel switch enclosures for switches located on building exteriors in areas where salt spray or extended high humidity is a concern.

Utilize non-fused disconnect switches as local disconnects only, properly protected by an upstream protective device.

3-2.9 Circuit Lockout Requirements.
Circuit breakers, disconnect switches, and other devices that are electrical energy-isolating must be lockable in accordance with NFPA 70E and OSHA 1910.303.

3-2.10 Signage
Place a safety sign on any cubicles containing more than one voltage source. Refer to ANSI Z535.4 for safety sign criteria.

3-3 MOTORS AND MOTOR CONTROL CIRCUITS.

3-3.1 Basic Motor Criteria.

3-3.1.1 Efficiency
Apply premium efficiency ratings per the Energy Policy Act of 2005 (EPACT 2005) to all motors.

3-3.1.2 Application
Use three-phase motors if more than 0.5 horsepower (373 watts) rating when such service is available. If three-phase service is not available, operate motors larger than 0.5 horsepower (373 watts) at phase-to-phase voltage rather than phase-to-neutral voltage. Motors 0.5 horsepower
(373 watts) and smaller should be single phase, with phase-to-phase voltage preferred over phase-to-neutral voltage.

Do not use 230V motors on 208V systems because the utilization voltage will commonly be below the -10% tolerance on the voltage rating for which the motor is designed (a 230V motor is intended for use on a nominal 240V system).

3-3.2 Motor Control Circuits.

3-3.2.1 Motor Controllers
Provide motor controllers (starters) for motors larger than 0.125 horsepower (93.25 watts) and apply the design criteria of NEMA ICS 1 and NEMA ICS 2.

3-3.2.2 Motor Starting
Use full voltage-type starting unless the motor starting current will result in more than a 20% transient voltage dip or if the analyzed voltage dip is otherwise determined to be unacceptable. For other than full voltage starting, apply one of the following methods for motor starting:

• Reduced Voltage Starters.

• Adjustable Speed Drives (ASDs) are also referred to as Variable Frequency Drives (VFDs). If an ASD is required for other reasons, it can also address motor starting current design needs. Refer to NEMA ICS 7 for design criteria related to the selection and design of ASDs. Appendix B provides additional information regarding the sizing and operational design of ASDs.

3-3.2.3 Manual Control
Provide manual control capability for all installations having automatic control that operates the motor directly. Use a double-throw, three-position switch or other suitable device (marked MANUAL-OFF-AUTOMATIC) for the manual control. Confirm that all safety control devices, such as low- or high-pressure cutouts, high-temperature cutouts, and motor overload protective devices, remain connected in the motor control circuit in both the manual and automatic positions.

3-4 SURGE PROTECTIVE DEVICES (SPDS).
Provide SPDs for surge protection of sensitive or critical electronic equipment and when specifically required.

The term transient voltage surge suppression (TVSS) is also used to describe SPDs. The design criteria provided here apply to permanently installed, hard-wired surge protectors and should not be applied to plug-in type surge protectors (Type 3). Use point-of-use (plug-in type) surge protectors to protect specific critical equipment that plugs into wall receptacles.
3-4.1 Power System Surge Protection.
Use Type 1 or Type 2 SPD and connect on the load side of a dedicated circuit breaker of the associated main distribution or branch panelboard, switchboard, or switchgear. Locate as close as practical to the breaker with a maximum lead length of 3 ft (900 mm). Do not install SPD inside a panelboard or switchboard enclosure. However, SPD can be installed in a separate compartment of a switchgear provided that it is supplied by a dedicated circuit breaker.

For buildings with high concentrations of electronics equipment, employ a two-stage or cascaded system. Coordinate multiple stage surge protection.

3-4.1.1 Service Entrance Surge Protection.
Provide the following specification requirements for SPD on the service entrance equipment

a. Use SPD to protect the electrical service entrance equipment.

b. The SPD must meet or have a voltage protection rating that is less than the UL 1449 voltage protection ratings listed below. If surge protection is required as part of a lightning protection system, comply with the more stringent voltage protection ratings specified in NFPA 780.

c. Per mode single pulse surge current rating for an 8x20 ms waveform must be no less than:

<table>
<thead>
<tr>
<th>Protection Modes</th>
<th>L-N</th>
<th>L-G</th>
<th>N-G</th>
<th>L-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>208/120 or 240/120</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>1,200</td>
</tr>
<tr>
<td>480/277</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
<td>2,000</td>
</tr>
</tbody>
</table>

d. Protection Mode: Provide the following six modes (additional modes are permitted):

Line-to-line
Line-to-ground or line-to-neutral

Wire SPDs at grounded service entrances in a line-to-ground (L–G) or line-to-neutral (L–N) configuration. For services without a neutral, connect the SPD elements line-to-ground (L–G).

e. MCOV for L-N and L-G modes of operation: 120% of nominal voltage for 240 volts and below; 115% of nominal voltage above 240 volts to 480 volts.

f. Surge Life: Greater than 5000 surges of repetitive sequential IEEE C62.41 Category C3 waveforms with less than 10% degradation of measured limiting voltage.

g. Listing: The total unit as installed must be UL 1283 and UL 1449 listed, and not merely the components or modules.

h. Warranty: Not less than a 5-year warranty and include unlimited free replacements of the unit if destroyed by lightning or other transients during the warranty period.

i. Diagnostics: Visual indication unit has malfunctioned or requires replacement. Provide Form C dry contacts for remote monitoring.

3-4.1.2 Branch Panelboard Surge Protection.

Provide the following specification requirements for SPD on all the branch panelboards for facilities requiring cascaded suppression system protection.

a. Use SPD to protect the distribution branch panelboards.

b. The SPD must meet or have a voltage protection rating that is less than the UL 1449 voltage protection ratings listed below.

c. Per mode single pulse surge current rating for an 8x20 ms waveform must be no less than:

\[
\begin{align*}
\text{L-N} & \quad 20\text{kA} \\
\end{align*}
\]
d. Protection Mode: Provide the following six modes (additional modes are permitted):

 Line-to-line

 Line-to-ground or line-to-neutral

Wire SPDs at grounded service entrances in a line-to-ground (L–G) or line-to-neutral (L–N) configuration. For services without a neutral, connect SPD elements line-to-ground (L–G).

e. MCOV for L-N, L-G, and N-G modes of operation: 120% of nominal voltage for 240 volts and below; 115% of nominal voltage above 240 volts to 480 volts.

f. Surge Life: Greater than 5000 surges of repetitive sequential IEEE C62.41 Category B3 waveforms with less than 10% degradation of measured limiting voltage.

g. Listing: The total unit as installed must be UL 1283 and UL 1449 listed, and not merely the components or modules.

h. Warranty: Not less than a 5-year warranty and include unlimited free replacements of the unit if destroyed by lightning or other transients during the warranty period.

i. Diagnostics: Visual indication unit has malfunctioned or requires replacement. Provide Form C dry contacts for remote monitoring.

3-4.1.3 Dwelling Units Surge Protection.
Install as close as practical to the main breaker/lugs. All leads must be as short as possible, with no leads longer than 24 in (610 mm). Provide protection in accordance with branch panelboard surge protection criteria listed above.

3-4.2 Surge Protection for Communications and Related Systems.

3-4.2.1 Systems Requiring Protection
Provide surge protection for the following systems, including related systems:

 • Fire alarm systems.
 • Telephone systems.
 • Computer data circuits.
 • Security systems.
• Television systems.
• Coaxial cable systems.
• Intercom systems.
• Electronic equipment data lines.

3-4.2.2 Protection Levels
Provide surge protection equipment used for communications and related systems as follows:

• If surge protection is required as part of a lightning protection system, comply with the more stringent voltage protection ratings specified in NFPA 780.

• If surge protection is not required as part of a lightning protection system, provide the following protection UL Listed and tested to UL 497A, or third party verified and tested to UL 497A:

 o Telephone communication interface circuit protection – provide a minimum surge current rating of 9,000A.
 o Central office telephone line protection – provide multi-stage protection with a minimum surge current rating of 4,000A.
 o Intercom circuit protection – provide a minimum surge current rating of 9,000A. Provide protection on points of entry and exit from separate buildings.

• Provide fire alarm and security alarm system loops and addressable circuits that enter or leave separate buildings, UL Listed or third-party verified and tested to UL 497B, with a minimum of 9,000A surge current rating.

• Protect coaxial lines at points of entry and exit from separate buildings.

• Single stage gas discharge protectors can be used for less critical circuits. Multistage protectors utilizing a gas discharge protector with solid-state secondary stages should be used to obtain lower let-through voltages for more critical equipment.

3-4.3 Acceptance Tests.
Perform the following installation checks:

• Inspect for physical damage and compare nameplate data with drawings and specifications.

• Verify that the surge protector rating is appropriate for the voltage.

• Inspect for proper mounting and adequate clearances.
• Verify that the installation achieves the minimum possible lead lengths. Inspect the wiring for loops or sharp bends that add to the overall inductance.

• Check tightness of connections by using a calibrated torque wrench. Refer to the manufacturer’s instructions or Table 10-1 of International Electrical Testing Association (NETA) ATS for the recommended torque.

• Check the ground lead on each device for individual attachment to the ground bus or ground electrode.

• Perform insulation resistance tests in accordance with the manufacturer’s instructions.

• For surge protectors with visual indications of proper operation (indicating lights), verify that the surge protector displays normal operating characteristics.

• Record the date of installation.

3-5 METERING.
Provide advanced metering systems (e.g., with remote reading, monitoring, or activation capabilities) in accordance with service-specific criteria to comply with EPACT 2005 requirements. Coordinate meters, system components, and meter locations to be compatible with the Activity’s central system.

Upon Activity request, limit housing units to meter sockets only. Sockets must be single phase, four terminal, and ring-less with manual bypass device and polycarbonate blank cover plate.

3-6 RACEWAY AND WIRING.

3-6.1 Wiring Devices.
Wiring devices and faceplate colors must match and be consistent with the interior wall types and colors. Use grounding type wiring devices. Outlet boxes must not be placed back to back. Provide a minimum of 12 inch (300 mm) of separation between outlet boxes located on opposite sides on common walls.

3-6.1.1 Switches.
Toggle switches must be specification grade, quiet type, and rated minimum 120/277V, 20A, totally enclosed with bodies of thermoplastic and/or thermoset plastic and mounting strap with grounding screw. Use silver-cadmium contacts and one-piece copper alloy contact arm.

When specified, pilot lights must be integrally constructed as a part of the switch's handle.

3-6.1.2 Receptacles.
Provide general purpose convenience outlets that are specification grade, 20A, 120V, duplex. Identify locations where split receptacles will be used with one receptacle controlled by a separate toggle switch. Provide GFI and AFCI protection in accordance with NFPA 70.
In addition to the location requirements specified by NFPA 70, locate general purpose and dedicated (on an individual circuit) outlets in accordance with the following:

a. Mechanical equipment: Provide receptacle within 25 ft (7.6 m) of mechanical equipment on the interior and exterior of buildings.

b. Office, staff-support spaces, and other workstation locations: Two duplex receptacles, one double duplex, or one quadraplex receptacle for each workstation with a minimum of one for every 10 ft (3 m) of wall space. When less than 10 ft (3 m) of wall at the floor line, provide a minimum of two receptacles spaced appropriately to anticipate furniture relocations. Limit loads to a maximum of four (4) workstations per 20A circuit.

c. Conference rooms and training rooms: One for every 12 ft (3.6 m) of wall space at the floor line. Ensure one receptacle is located next to each voice/data outlet. Provide one receptacle above the ceiling to support video projection device. Extend circuit to wall location for connection to motorized screen. When it is expected that a conference room table will be specifically dedicated to floor space in a conference room, locate a floor-mounted receptacle under the table. This receptacle may be part of combination power/communications outlet.

d. Provide power outlets throughout the building to serve all proposed equipment, including government furnished equipment, and allow for future reconfiguration of equipment layout. Provide power connections to all ancillary office equipment such as printers, faxes, plotters, and shredders. Provide dedicated circuits where warranted.

e. In each telecommunications room provide a dedicated 20A circuit with a receptacle adjacent to each rack or backboard for each of the following:
 - CCTV for training systems
 - CCSTV for security systems
 - CATV
 - Voice systems
 - Data systems.

f. Provide dedicated receptacles as required throughout the facility for television monitors. These outlets will typically be located at the ceiling level for wall mounted television monitors. However, similar specialty equipment can share the same circuit.

g. Corridors: One every 50 ft (15 m) with a minimum of one per corridor.
h. Janitor’s closet and toilet rooms: One GFI receptacle per closet. Provide GFI receptacles at counter height for each counter in toilets such that there is a minimum of one outlet for each two sinks.

i. Space with counter tops: One for every 4 ft (1.2 m) of countertop, with a minimum of one outlet.

j. Building exterior: One for each wall, GFI protected and weatherproof.

k. Kitchen non-residential: One for each 10 ft (3 m) of wall space at the floor line.

l. Dwelling units, Child Development Centers, and other child occupied spaces (including toilets): Provide listed tamper-resistant receptacles.

m. All other rooms: One for every 25 ft (7.6 m) of wall space at the floor line. When 25 ft (7.6 m) or less of wall at the floor line exists in a room, provide a minimum of two receptacles spaced appropriately to anticipate furniture relocations.

n. Special purpose receptacles: Coordinate with the user to provide any special purpose outlets required. Provide outlets to allow connection of equipment in special use rooms.

3-6.2 Cable and Raceway Criteria.

3-6.2.1 Installation

Minimum permitted size conduit permitted is 1/2 in (16 mm). Provide an insulated green equipment grounding conductor for all circuit(s) installed in raceways. Conceal raceways above ceilings and in finished areas that have finished walls or finished surfaces.

The above minimum conduit size does not apply to conduit that is part of a factory installed assembly, such as lighting fixtures.

3-6.2.2 Approved Cable and Raceway Types

Specify cables and raceway in accordance with NFPA 70 as follows:

- The Uses Permitted are as modified by Table 2-1.

- The Uses Not Permitted are:
 - As specified in NFPA 70.
 - When restricted by other UFCs for specific types of buildings such as medical facilities.

For instances where NFPA 70 does not allow an installation based on “subject to physical damage” or “subject to severe physical damage”, select an alternate design approach. Locations that are subject to physical damage or severe physical damage include:
• Exposed interior raceways installed less than 6 ft above finished floor elevation where personnel are operating mechanized equipment on a recurring basis. Mechanized equipment that might be operated on a recurring basis include vehicles, carts, forklifts, and pallet-handling units.

• Exposed exterior raceways installed less than 8 ft above finished grade or 8 ft above floor elevation for raceways on elevated platforms, loading docks, or stairwells.

Table 2-1 Authorized Cable and Raceway Types

<table>
<thead>
<tr>
<th>NFPA 70 Article</th>
<th>Raceway/Cable Type</th>
<th>Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td>AC – Armored Cable</td>
<td>Prohibited for feeder circuits. Prohibited for embedded locations. Allowed for branch circuits only in the following dry locations: • New construction and renovations in exposed locations. • Concealed in renovations in existing areas where walls and ceilings are not disturbed. • Cable trays.</td>
</tr>
<tr>
<td>322</td>
<td>FC – Flat Cable Assemblies</td>
<td>Authorized.</td>
</tr>
<tr>
<td>324</td>
<td>FCC – Flat Conductor Cable</td>
<td>Authorized.</td>
</tr>
<tr>
<td>325</td>
<td>IGS – Integrated Gas Spacer Cable</td>
<td>Prohibited.</td>
</tr>
<tr>
<td>328</td>
<td>MV – Medium Voltage Cable</td>
<td>Authorized. For interior applications, MV cable must be installed in raceway or a fully enclosed cable tray. Refer to UFC 3-550-01 for additional applications.</td>
</tr>
<tr>
<td>NFPA 70 Article</td>
<td>Raceway/Cable Type</td>
<td>Authorization</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| 330 | MC – Metal-Clad Cable | Prohibited for feeder circuits other than feeder circuits for aerial messengers between buildings.
<p>| | | Prohibited for embedded or direct buried locations. |
| | | Prohibited for concealed locations, except as allowed below. |
| | | Allowed for branch circuits only in the following dry locations: |
| | | • New construction and renovations in exposed locations. |
| | | • Concealed in renovations in existing areas where walls and ceilings are not disturbed. |
| | | • Cable trays. |
| 332 | MI – Mineral-Insulated, Metal-Sheathed Cable | Authorized. |
| 334 | NM, NMC, NMS – Nonmetallic-Sheathed Cable | Allowed only in one- and two-family dwellings and their attached or detached garages, and their storage buildings. |
| 336 | TC – Power and Control Tray Cable | Authorized. |
| 338 | SE, USE – Service-Entrance Cable | Authorized. |
| 340 | UF – Underground Feeder and Branch-Circuit Cable | Prohibited. |
| 342 | IMC – Intermediate Metal Conduit | Authorized. |
| 344 | RMC – Rigid Metal Conduit | Authorized. Only threaded-type fittings are allowed for wet and damp locations. |
| 348 | FMC – Flexible Metal Conduit | Flexible metal conduit can be used, limited to 6 ft length, for recessed and semirecessed lighting fixtures; for equipment subject to vibration; and for motors other than pumps. Use liquidtight flexible metal conduit in damp and wet locations and for pumps. |</p>
<table>
<thead>
<tr>
<th>NFPA 70 Article</th>
<th>Raceway/Cable Type</th>
<th>Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>LFMC – Liquidtight Flexible Metal Conduit</td>
<td>Use LFMC where authorized for FMC in damp and wet locations and for pumps.</td>
</tr>
<tr>
<td>352</td>
<td>PVC – Rigid Polyvinyl Chloride Conduit</td>
<td>Authorized. Minimum allowed size is PVC Schedule 40. For exterior use, comply with UFC 3-550-01.</td>
</tr>
<tr>
<td>353</td>
<td>HDPE – High Density Polyethylene Conduit</td>
<td>For exterior use only. Comply with UFC 3-550-01.</td>
</tr>
<tr>
<td>354</td>
<td>NUCC – Nonmetallic Underground Conduit with Conductors</td>
<td>Authorized only for exterior branch circuits and for feeder circuits between buildings.</td>
</tr>
<tr>
<td>355</td>
<td>RTRC – Reinforced Thermosetting Resin Conduit</td>
<td>Authorized.</td>
</tr>
<tr>
<td>356</td>
<td>LFNC – Liquidtight Flexible Nonmetallic Conduit</td>
<td>Prohibited.</td>
</tr>
<tr>
<td>358</td>
<td>EMT – Electrical Metallic Tubing</td>
<td>Specify EMT for branch circuits and feeders above suspended ceilings or exposed where not subject to physical damage. Do not use EMT underground, encased in concrete, mortar or grout, in hazardous locations, where exposed to physical damage, outdoors or in fire pump rooms.</td>
</tr>
<tr>
<td>360</td>
<td>FMT – Flexible Metallic Tubing</td>
<td>Prohibited.</td>
</tr>
<tr>
<td>362</td>
<td>ENT – Electrical Nonmetallic Tubing</td>
<td>Prohibited.</td>
</tr>
<tr>
<td>366</td>
<td>Auxiliary Gutters</td>
<td>Authorized and must be listed for the application.</td>
</tr>
<tr>
<td>368</td>
<td>Busways</td>
<td>Authorized. For low voltage busway, provide UL 857 listed busway. For medium voltage busway, comply with IEEE C37.23.</td>
</tr>
<tr>
<td>370</td>
<td>Cablebus</td>
<td>Authorized.</td>
</tr>
<tr>
<td>NFPA 70 Article</td>
<td>Raceway/Cable Type</td>
<td>Authorization</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>372</td>
<td>Cellular Concrete Floor Raceways</td>
<td>Authorized. Requires a unique Unified Facilities Guide Specification to be developed as part of any design.</td>
</tr>
<tr>
<td>374</td>
<td>Cellular Metal Floor Raceways</td>
<td>Authorized. Requires a unique Unified Facilities Guide Specification to be developed as part of any design.</td>
</tr>
<tr>
<td>376</td>
<td>Metal Wireways</td>
<td>Authorized and must be listed for the application.</td>
</tr>
</tbody>
</table>
| 378 | Nonmetallic Wireways | Authorized.

Note: The UFC definition of “subject to physical damage” prohibits the use of nonmetallic wireways for exterior applications installed less than 8 ft above finished grade or 8 ft above floor elevation for raceways on elevated platforms, loading docks, or stairwells.

| 380 | Multioutlet Assembly | Authorized for building improvements or renovations, or for applications where a variety of cord-and-plug connected equipment will be utilized in a limited space, such as in some areas of medical facilities, shops, and laboratories.
Authorized for Sensitive Compartmented Information Facilities (SCIF) to limit the number of electrical penetrations through the SCIF boundary. |
| 382 | Nonmetallic Extensions | Prohibited. |
| 384 | Strut-Type Channel Raceway | Authorized. |
| 386 | Surface Metal Raceways | Authorized for use only for building improvements or renovations, or for applications where a variety of cord-and-plug connected equipment will be utilized in a limited space, such as in some areas of medical facilities, shops, and laboratories.
Authorized for Sensitive Compartmented Information Facilities (SCIF) to limit the number of electrical penetrations through the SCIF boundary. |
3-6.3 Conductors.
Conductors #6 AWG and smaller must be copper. Aluminum conductors of equivalent ampacity can be used instead of copper for #4 AWG and larger sizes.

Branch circuit conductors, including power and lighting applications, will in no case be less than #12 AWG. Provide branch circuit breakers rated for 20 amperes minimum, except where lesser ratings are required for specific applications, such as fractional horsepower motor circuits.

3-7 STATIONARY BATTERIES AND BATTERY CHARGERS.

3-7.1 Selection.

3-7.1.1 Vented Lead Acid Batteries
Use vented lead acid batteries preferentially for switchgear control power and UPS applications. Batteries for switchgear or backup power applications should be rated for general purpose, switchgear, or utility use. Batteries for UPS applications should be rated for UPS or high-rate use.

3-7.1.2 Valve-Regulated Lead Acid Batteries
As a general practice, do not use a valve-regulated lead acid (VRLA) battery if a vented lead-acid battery will satisfy the design and installation requirements. VRLA batteries have exhibited a shorter service life than vented equivalents and have shown a tendency to fail without warning. Refer to IEEE Std 1189 for additional information regarding the unique failure modes and
shorter service life of this battery type. For the Air Force, refer also to AFPAM 32-1186 for additional information regarding VRLA batteries.

3-7.1.2.1 Allowed Applications
VRLA batteries are allowed to be used in the following types of applications:

- Installations with small footprints such that a vented battery with adequate power density will not fit within the available space.
- Locations in which the consequences of electrolyte leakage cannot be allowed. UPS systems are often located in areas that necessitate the use of a VRLA battery.

3-7.1.2.2 Prohibited Applications
Do not use VRLA batteries in the following types of applications:

- Unregulated environments that can experience abnormally high and low temperatures.
- Unmonitored locations that seldom receive periodic maintenance checks. VRLA batteries have shown a tendency to fail within only a few years after installation.
- Critical applications, unless the installation location requires the features available only in a VRLA battery.

3-7.1.3 Nickel-Cadmium Batteries
Nickel-cadmium batteries are often more expensive than vented lead-acid batteries and should be considered primarily for extreme temperature environments or engine-starting applications. Nickel-cadmium batteries are preferred for engine starting applications because of their high-rate discharge capability and their more predictable failure modes.

3-7.1.4 Lithium Batteries
Do not use lithium-ion, lithium metal polymer, or other lithium-based batteries for stationary applications.

3-7.1.5 Battery Life for Life-Cycle Cost Analyses
Apply the following service life for life-cycle cost comparisons of stationary batteries:

- Small VRLA batteries – 3 years.
- Large VRLA batteries – 7 years.
- Small vented lead acid batteries – 10 years.
- Large vented lead acid batteries – 15 years.
- Nickel-cadmium batteries – 15 years.
3-7.2 Installation Design.

3-7.2.1 Industry Standards.
Review the following IEEE standards, as applicable for the battery type, prior to the installation:

- IEEE Std 450—provides maintenance and test criteria for vented lead acid batteries.
- IEEE Std 484—provides installation criteria for vented lead acid batteries.
- IEEE Std 485—defines battery sizing requirements for lead acid batteries.
- IEEE Std 1106—provides maintenance and test criteria for nickel cadmium batteries.
- IEEE Std 1115—defines battery sizing requirements for nickel cadmium batteries.
- IEEE Std 1184—provides application and sizing criteria for UPS applications.
- IEEE Std 1187—provides installation criteria for valve-regulated lead acid batteries.
- IEEE Std 1188—provides maintenance and test criteria for valve-regulated lead acid batteries.
- IEEE Std 1189—explains application limitations for valve-regulated lead acid batteries.

Note: the above industry standards apply to lead acid and nickel cadmium batteries. There are no industry standards available yet for the selection, specification, sizing, design, installation, maintenance, and testing of lithium-ion, lithium metal polymer, or other lithium-based batteries for stationary applications.

3-7.2.2 Design Requirements.
Size the battery in accordance with IEEE Std 485, IEEE Std 1115, or IEEE Std 1184 as appropriate for the selected battery type and application.

3-7.2.3 Installation Requirements.
Design and install the battery in accordance with IEEE Std 484, IEEE Std 1187, or IEEE Std 1106 as appropriate for the selected battery type. Refer to the above industry standards and NETA ATS for acceptance test criteria.

3-7.2.4 Battery Chargers.
Use single-phase chargers for smaller applications. Rate single-phase battery chargers for 240V single phase, unless only 120V is available. Use three-phase chargers if the charger’s dc output current rating will be greater than 75A. Unless the battery has specific requirements to the contrary, all chargers should be of the constant voltage type.

3-7.2.5 Battery Protection.
Install a circuit breaker or fused protection device as close to the battery as possible.
Provide overcurrent protection for each string in a parallel battery system. Refer to IEEE Std 1375 for additional guidance.

3-8 GROUNDING, BONDING, AND STATIC PROTECTION.
Comply with NFPA 70 for grounding and bonding requirements.

3-8.1 Ground Rods.

3-8.1.1 Design
For ground rod composition, minimum spacing requirements and connections, conform to requirements of NFPA 70 Article 250 except that minimum ground rod dimensions are 10 feet (3.0 m) in length and ¾ inch (19 mm) diameter. Provide copper-clad steel, solid copper, or stainless steel ground rods.

3-8.1.2 Connections
All connections to ground rods below ground level must be by exothermic weld connection or with a high compression connection using a hydraulic or electric compression tool to provide the correct circumferential pressure. Accessible connections above ground level and in test wells can be accomplished by clamping.

3-8.1.3 Spacing and Location
Spacing for driving additional grounds must be a minimum of 10 ft (3.0 m). Bond these driven electrodes together with a minimum of 4 AWG soft drawn bare copper wire buried to a depth of at least 12 in (300 mm).

Install ground rods (and ground ring, if applicable) 3 ft to 8 ft (0.9 m to 2.4 m) beyond the perimeter of the building foundation and at least beyond the drip line for the facility. If another UFC requires the installation of one or more ground rods inside a facility, follow the requirements specified in that UFC.

3-8.2 Ground Rings.
Coordinate requirements for the ground ring of a lightning protection system with UFC 3-575-01. Provide a ground ring (counterpoise) for facilities with sensitive electronic equipment or other applications when identified by project requirements.

Provide a ground ring with at least two ground rods located diagonally at opposite corners. When required by a specific activity or facility, provide a ground rod at each change in direction of the ground ring and install test wells for at least two of the corner ground rods to allow for testing of the system. Assemble test wells with bolted connections to facilitate future testing.

3-9 POWER QUALITY.
Design secondary electrical systems to mitigate the harmonic effects of non-linear loads as a result of connections to electronic loads, including computer work stations, file servers, UPS, and electronic ballasts. Refer to Appendix C for power quality design criteria.
3-10 SYSTEMS FURNITURE.

3-10.1 Planning
When systems furniture is utilized, the electrical designer, the architect, and the interior designer must coordinate during the design process. Systems furniture is typically specified and ordered when construction is nearing completion; therefore, if proper coordination has not occurred earlier in the design process, field interface problems will occur.

3-10.2 Design
Systems furniture is pre-wired to a wiring harness. Unless specified otherwise, select a standard wiring harness that meets one of the following configurations:

- **5-wire harness consisting of 3 circuit conductors, 1 oversized neutral conductor and 1 equipment grounding conductor.**

- **8-wire harness consisting of 4 circuit conductors, 1 oversized neutral conductor, 1 full sized neutral conductor and 2 separate equipment grounding conductors.**

Serve 5-wire harnesses with 3 separate circuits and 8-wire harnesses with 4 separate circuits. Provide oversized neutrals to match the harness configuration and balance loads between circuits and phases. A single circuit must not serve more than 4 cubicles under any circumstances.

3-11 ASHRAE COMPLIANCE.
Provide automatic receptacle control in accordance with ASHRAE 90.1-2013.

The detailed electrical energy monitoring requirements of ASHRAE 90.1-2013 are permissible on projects when authorized in writing by the activity in order to coordinate with their existing industrial controls program.
GLOSSARY

A Amperes
AC Alternating Current
AC Armored Cable
AFCI Arc Fault Current Interrupter
AHJ Authority Having Jurisdiction
ANSI American National Standards Institute
ASD Adjustable Speed Drive
ATS Automatic Transfer Switch
AWG American Wire Gauge
CCTV Closed Circuit Television
CATV Cable Television
CFR Code of Federal Regulations
COPS Critical Operations Power System
dc Direct Current
DCOA Designated Critical Operations Area
EGSA Electrical Generating Systems Association
EMT Electrical Metallic Tubing
ENT Electrical Non-Metallic Tubing
FC Flat Cable Assemblies
FCC Flat Conductor Cable
FMC Flexible Metal Conduit
FMT Flexible Metallic Tubing
ft Feet
GFI Ground Fault Circuit Interrupter
GRS Galvanized Rigid Steel
HDPE High Density Polyethylene Conduit
HID High Intensity Discharge
Hz Hertz
IEEE formerly Institute of Electrical and Electronics Engineers
IMC Intermediate Metal Conduit
kA Kilo-Amperes
kVA Kilo-Volt-Amperes
kW Kilowatt
LFMC Liquidtight Flexible Metal Conduit
LFNC Liquidtight Flexible Nonmetallic Conduit
m Meter
MCC Motor Control Center
MCOV Maximum Continuous Overvoltage Rating
mm Millimeter
MC Metal-Clad Cable
MI Mineral-Insulated, Metal-Sheathed Cable
MV Medium Voltage Cable
NEC National Electrical Code
NEMA National Electrical Manufacturers Association
NETA International Electrical Testing Association
NFPA National Fire Protection Association
NM, NMC, NMS Nonmetallic-Sheathed Cable
NUCC Nonmetallic Underground Conduit with Conductors
OSHA Occupational Safety and Health Administration
PVC Rigid Polyvinyl Chloride Conduit
RMC Rigid Metal Conduit
RMS Root-Mean-Square
RTRC Reinforced Thermosetting Resin Conduit
SCIF Sensitive Compartmented Information Facilities
SE, USE Service-Entrance Cable
SPD Surge Protective Devices
SWD Switching Duty
TC Power and Control Tray Cable
TVSS Transient Voltage Surge Suppressor
UF Underground Feeder and Branch-Circuit Cable
UL Underwriters Laboratories
UPS Uninterruptible Power Supply
V Volts
VFD Variable Frequency Drive (see ASD)
VRLA Valve-Regulated Lead Acid
DEFINITION OF TERMS

Note: The terms listed here are provided for clarification of the design criteria provided in this publication. Refer to IEEE Std 100 for additional electrical-related definitions.

Automatic Transfer Switch (ATS): A switch designed to sense the loss of one power source and automatically transfer the load to another source of power.

Branch Circuit: The circuit conductors and components between the final overcurrent device protecting the circuit and the equipment.

Closed Transition Switch: Transfer switch that provides a momentary paralleling of both power sources during a transfer in either direction. The closed transition is possible only when the sources are properly interfaced and synchronized.

Existing Facility: A facility is existing if changes to be made are cosmetic or minor in nature.

Harmonic: A sinusoidal component of a periodic wave or quantity having a frequency that is an integral multiple of the fundamental frequency.

Linear Load: An electrical load device that presents an essentially constant load impedance to the power source throughout the cycle of applied voltage in steady-state operation.

Listed: Applies to equipment or materials included in a list published by an organization acceptable to the authority having jurisdiction. The organization periodically inspects production and certifies that the items meet appropriate standards or tests as suitable for a specific use.

Low Voltage System: An electrical system having a maximum root-mean-square (rms) voltage of less than 1,000 volts.

Medium Voltage System: An electrical system having a maximum RMS AC voltage of 1,000 volts to 34.5 kV. Some documents such as ANSI C84.1 define the medium voltage upper limit as 100 kV, but this definition is inappropriate for facility applications.

Molded Case Circuit Breaker: A low voltage circuit breaker assembled as an integral unit in an enclosing housing of insulating material. It is designed to open and close by nonautomatic means, and to open a circuit automatically on a predetermined overcurrent, without damage to itself, when applied properly within its rating.

Motor Control Center: A piece of equipment that centralizes motor starters, associated equipment, bus and wiring in one continuous enclosed assembly.
New Construction: A facility is considered new if changes to be made are more than cosmetic or minor, such as major renovations, additions, or new facilities.

Nonlinear Load: A steady state electrical load that draws current discontinuously or has the impedance vary throughout the input ac voltage waveform cycle. Alternatively, a load that draws a nonsinusoidal current when supplied by a sinusoidal voltage source.

Power Quality: The concept of powering and grounding sensitive equipment in a manner that is suitable to the operation of that equipment.

Service Voltage: Voltage at the facility service entrance location.

Short Circuit: An abnormal condition (including an arc) of relatively low impedance, whether made accidentally or intentionally, between two points of different potential.

Subject to Physical Damage (or Subject to Severe Physical Damage): Locations that are subject to physical damage or severe physical damage include:

- Exposed interior raceways installed less than 6 ft above finished floor elevation where personnel are operating mechanized equipment on a recurring basis. Mechanized equipment that might be operated on a recurring basis includes vehicles, carts, forklifts, and pallet-handling units.
- Exposed exterior raceways installed less than 8 ft above finished grade or 8 ft above floor elevation for raceways on elevated platforms, loading docks, or stairwells.

Surge Protector: A device composed of any combination of linear or nonlinear circuit elements and intended for limiting surge voltages on equipment by diverting or limiting surge current; it prevents continued flow of current and is capable of repeating these functions as specified.

Transfer Switch: A device for transferring one or more load conductor connections from one power source to another.

Uninterruptible Power Supply System: A system that converts unregulated input power to voltage and frequency controlled filtered ac power that continues without interruption even with the deterioration of the input ac power.

Utilization Voltage: The voltage at the line terminals of utilization equipment.
REFERENCES

Interior Electrical Systems, UFC 3-520-01, October 6, 2015
https://www.wbdg.org/ccb/DOD/UFC/ufc_3_520_01.pdf

Electrical Safety, O & M., UFC 3-560-01, December 6, 2006, Change 5 April 14, 2015
https://www.wbdg.org/ccb/DOD/UFC/ufc_3_560_01.pdf